-
(2016). East-west spatial groupings in intertidal communities, environmental drivers and key species. Journal of the Marine Biological Association of the United Kingdom, , 1-13. https://doi.org/10.1017/S0025315416001442
-
(2016). Quantifying the total wetted surface area of the world fleet: a first step in determining the potential extent of ships’ biofouling. Biological Invasions, 18 (1) , 265-277. http://dx.doi.org/10.1007/s10530-015-1007-z
-
(2016). [node:title] . Frontiers in Marine Science, , 66. http://dx.doi.org/10.3389/fmars.2016.00066
-
(2016). Amplicon-Based Pyrosequencing Reveals High Diversity of Protistan Parasites in Ships' Ballast Water: Implications for Biogeography and Infectious Diseases. Microbial ecology, 71 (3) , 530-542. http://dx.doi.org/10.1007/s00248-015-0684-6
-
(2016). [node:title] . Helgoland Marine Research, , 1-18. http://dx.doi.org/10.1186/s10152-016-0465-8
-
(2016). [node:title] . Ecology and Evolution, 6 (8) , 2453-2471. http://dx.doi.org/10.1002/ece3.2065
-
(2016). [node:title] . Methods in Ecology and Evolution, 7 (10) , 1217-1225. http://dx.doi.org/10.1111/2041-210X.12594
-
(2016). Assessing population increase as a possible outcome to management of invasive species. Biological Invasions, 18 (2) , 533-548. http://dx.doi.org/10.1007/s10530-015-1026-9
-
(2016). Ballast-borne marine invasive species: exploring the risk to coastal Alaska, USA. Management of Biological Invasions, 7 , 199-211. http://dx.doi.org/10.3391/mbi.2016.7.2.08
-
(2016). [node:title] . Biological Conservation, 202 , 78-87. http://dx.doi.org/10.1016/j.biocon.2016.08.026
Marine Invasions Research